\qquad
\qquad

C. U. SHAH UNIVERSITY
 WADHWAN CITY
 University (Summer) Examination - May 2015

Course Name: B.Tech. Sem-III
Marks: 70

Subject Name: Fluid Mechanics-I
Date: 08/05/2015
Subject Code: 4TE03FLM1
Time: 2:30pm To 5:30pm

Instructions:

(1) Attempt all questions of both sections in separate answer book/supplementary.
(2) Use of programmable calculator \& any other electronic instrument is prohibited.
(3) Instructions written on main answer book are strictly to be obeyed.
(4) Draw neat diagrams \& figures (If necessary) at right places.
(5) assume suitable \& perfect data if needed.

Section - I

Q-1 (a) Differentiate between Laminar flow and Turbulent flow 2
(b) Distinguish between: compressible and incompressible flow 2
(c) Define : (i) Capillarity (ii) Buoyancy 2
(d) What is Stream function? 1

Q-2 (a) One liter of crude oil weights 9.6 N . Calculate its specific weight, density and 5 specific gravity.
(b) Explain with sketch the relationship between the absolute pressure, 5 atmospheric pressure and gauge pressure.
(c) Explain the terms Dynamic Viscosity and Kinematics Viscosity

OR

Q-2 (a) A plate 0.025 mm distant from a fixed plate, move at $60 \mathrm{~cm} / \mathrm{s}$ and requires a force of 2 N per unit area i.e. $2 \mathrm{~N} / \mathrm{m}^{2}$ to maintain this speed. Determine the fluid viscosity between the plates.
(b) Explain how you will determine the meta-centre height of a floating body experimentally?
(c) Enlist inverted differential manometer in details.

Q-3 (a) A rectangular plane surface 2 m wide and 3 m deep lies in water in such way that its plane makes an angle of 30° with the free surface of water. Determine the total pressure and position of center of pressure when the upper edge is 1.5 m below the free water surface.
(b) Define the following terms:
(i) Specific mass, (ii) Specific weight, (iii) Specific gravity, (iv) Velocity potential function, (v) Surface tension
(c) Distinguish between : (i) Rotational and irrotational flow, (ii) Metacentre and metacentric height

OR

Q-3 (a) Determine the total pressure on a circular plate of diameter 1.5 m which is placed vertically in water in such a way that the centre of the plate is 3 m below the free surface of water. Find the position of centre of pressure also.
(b) State and Prove Euler's equation of motion of a fluid element along a stream line stating the principle used.
(c) Write Bernoulli's equations for isothermal and adiabatic processes.

Q-4 (a) Enlist major and minor energy losses for flow through pipes.
(b) Write down the devices used to measure Pressure and Discharge in a pipe carrying flow of water.
(c) Define the terms: (i) Impact of jets, (ii) Jet propulsion.
(d) What is Venturimeter? 1

Q-5 (a) Find the discharge over a rectangular weir of length 100 m . The head of water over the weir is 1.5 m . The velocity of approach is given as $0.5 \mathrm{~m} / \mathrm{s}$. Take C_{d} $=0.60$.
(b) Derive formulae for calculating loss of head due to sudden enlargement.
(c) Write brief notes on: (i) Narrow crested weir, (ii) Ogee weir

OR
Q-5 (a) Find the time required to lower the water level from 3 m to 2 m in a reservoir of dimension 80 mx 80 m , by a rectangular notch of length 1.5 m . Take $\mathrm{C}_{\mathrm{d}}=$ 0.62 .
(b) Derive Darcy weisbatch equation for loss of head due to friction in a pipe line.
(c) Classify different types of orifices and write down the equations for hydraulic coefficients used in it.
Q-6 (a) Find the diameter of a pipe of length 2000 m when the rate of flow of water through the pipe is 200 litres/s and the head lost due to friction is 4 m . Take the value of $\mathrm{C}=50$ in Chezy's formulae.
(b) Obtain an expression for the force exerted by a jet of water on a fixed vertical plate in the direction of the jet.
(c) Water is flowing through a pipe at the end of which a nozzle is fitted. The diameter of the nozzle is 100 mm and the head of water at the center nozzle is 100 m . Find the force exerted by the jet of water on a fixed vertical plate. The co-efficient of velocity is given as 0.95 .

OR

Q-6 (a) Find the loss of head when a pipe of diameter 200 mm is suddenly enlarged to a diameter of 400 mm . The rate of flow of water through the pipe is 250 litres/s.
(b) A jet of water of diameter 10 cm strikes a flat plate normally with a velocity of $15 \mathrm{~m} / \mathrm{s}$. the plate is moving with a velocity of $6 \mathrm{~m} / \mathrm{s}$ in the direction of the jet and away from the jet. Find:
(i) The force exerted by the jet on the plate
(ii) Work done by the jet on the plate per second.
(c) Find an expression for the efficiency of a series of moving curved vanes when 4 a jet of water strikes the vanes at one of its tips.

